Search results for "beta sheet"

showing 10 items of 11 documents

High-Pressure-Driven Reversible Dissociation of α-Synuclein Fibrils Reveals Structural Hierarchy

2017

The analysis of the α-synuclein (aS) aggregation process, which is involved in Parkinson's disease etiopathogenesis, and of the structural feature of the resulting amyloid fibrils may shed light on the relationship between the structure of aS aggregates and their toxicity. This may be considered a paradigm of the ground work needed to tackle the molecular basis of all the protein-aggregation-related diseases. With this aim, we used chemical and physical dissociation methods to explore the structural organization of wild-type aS fibrils. High pressure (in the kbar range) and alkaline pH were used to disassemble fibrils to collect information on the hierarchic pathway by which distinct β-sh…

0301 basic medicineModels MolecularCircular dichroismAmyloidProtein FoldingProtein domainBeta sheetBiophysicsFibrilMicroscopy Atomic ForceSpectrum Analysis RamanDissociation (chemistry)03 medical and health sciences0302 clinical medicineProtein structureMicroscopy Electron TransmissionProtein DomainsSpectroscopy Fourier Transform InfraredEscherichia coliPressureChemistryCircular DichroismEnergy landscapeProteinsalpha synuclein amyloid recombinant proteinHydrogen-Ion ConcentrationRecombinant ProteinsCrystallography030104 developmental biologyMutationalpha-SynucleinProtein foldingProtein Conformation beta-StrandProtein Multimerization030217 neurology & neurosurgery
researchProduct

Insights into the Structure of the Vip3Aa Insecticidal Protein by Protease Digestion Analysis

2017

Vip3 proteins are secretable proteins from Bacillus thuringiensis whose mode of action is still poorly understood. In this study, the activation process for Vip3 proteins was closely examined in order to better understand the Vip3Aa protein stability and to shed light on its structure. The Vip3Aa protoxin (of 89 kDa) was treated with trypsin at concentrations from 1:100 to 120:100 (trypsin:Vip3A, w:w). If the action of trypsin was not properly neutralized, the results of SDS-PAGE analysis (as well as those with Agrotis ipsilon midgut juice) equivocally indicated that the protoxin could be completely processed. However, when the proteolytic reaction was efficiently stopped, it was revealed t…

0301 basic medicineProteasesHealth Toxicology and MutagenesisSize-exclusion chromatographyBeta sheetBacillus thuringiensislcsh:MedicineBiologyToxicologyCleavage (embryo)ArticleProtein Structure Secondary03 medical and health sciencestrypsin inhibitorsBacterial ProteinsSDS-PAGE artefactprotease stabilitymedicinebacterial secreted proteinsAnimalsTrypsinMode of actionProtein secondary structureVip proteinsIntestinal Secretionslcsh:Rtoxin activationVip proteins; bacterial secreted proteins; toxin activation; proteolytic activation; trypsin inhibitors; <i>Bacillus thuringiensis</i>; SDS-PAGE artefact; protease stabilityTrypsinMolecular biologyLepidoptera030104 developmental biologyBiochemistryproteolytic activationLarvaProteolysisPeptidesAlpha helixmedicine.drugToxins
researchProduct

Lunasin is a redox sensitive intrinsically disordered peptide with two transiently populated α-helical regions.

2016

Lunasin is a 43 amino acid peptide with anti-cancer, antioxidant, anti-inflammatory and cholesterol-lowering properties. Although the mechanism of action of lunasin has been characterized to some extent, its exact three-dimensional structure as well as the function of the N-terminal sequence remains unknown. We established a novel method for the production of recombinant lunasin that allows efficient isotope labeling for NMR studies. Initial studies showed that lunasin can exist in a reduced or oxidized state with an intramolecular disulfide bond depending on solution conditions. The structure of both forms of the peptide at pH 3.5 and 6.5 was characterized by CD spectroscopy and multidimen…

0301 basic medicineProtein Conformation alpha-HelicalCircular dichroismPhysiologyBeta sheetPeptideIntrinsically disordered proteinsBiochemistryLunasinAntioxidantsHistones03 medical and health sciencesCellular and Molecular Neuroscience0302 clinical medicineEndocrinologyNeoplasmsAnticarcinogenic AgentsHumansAmino Acid SequenceDisulfidesProtein secondary structureNuclear Magnetic Resonance BiomolecularPlant Proteinschemistry.chemical_classificationChemistryAcetylationNuclear magnetic resonance spectroscopyIntrinsically Disordered Proteins030104 developmental biologyBiochemistry030220 oncology & carcinogenesisBiophysicsSoybean ProteinsPeptidesOxidation-ReductionFunction (biology)Peptides
researchProduct

Structure of Rhodococcus erythropolis limonene-1,2-epoxide hydrolase reveals a novel active site

2003

Epoxide hydrolases are essential for the processing of epoxide-containing compounds in detoxification or metabolism. The classic epoxide hydrolases have an alpha/beta hydrolase fold and act via a two-step reaction mechanism including an enzyme-substrate intermediate. We report here the structure of the limonene-1,2-epoxide hydrolase from Rhodococcus erythropolis, solved using single-wavelength anomalous dispersion from a selenomethionine-substituted protein and refined at 1.2 A resolution. This enzyme represents a completely different structure and a novel one-step mechanism. The fold features a highly curved six-stranded mixed beta-sheet, with four alpha-helices packed onto it to create a …

Models MolecularAFSG Stafafdelingen (WUATV)10050 Institute of Pharmacology and Toxicologydrug protein bindingEnantioselectivityEpoxide hydrolaseCrystallography X-Rayuncultured actinomyceteCatalytic Domain2400 General Immunology and Microbiologyalpha helixRhodococcuscholesterol epoxide hydrolasenaphthalene 12-dioxygenasedcl14limonene 12 epoxide hydrolaseEpoxide hydrolaseBacteria (microorganisms)delta(5)-3-ketosteroid isomeraseEpoxide HydrolasesLimonene-12-epoxide hydrolaseGeneral Neurosciencearticle2800 General NeuroscienceActinobacteria (class)Articlesagrobacterium-radiobacterEnzyme structureRecombinant Proteinsunclassified drugenzyme structurereaction analysisBiochemistrypriority journalenzyme active siteMechanism2-dioxygenaseDimerizationBiotechnologychemical reactioncrystal structureaspergillus-nigermacromolecular structuresStereochemistrybeta sheetvalpromideMolecular Sequence Data610 Medicine & healthGenetics and Molecular BiologyBiologyGeneral Biochemistry Genetics and Molecular BiologyBacterial Proteinssite directed mutagenesis1300 General Biochemistry Genetics and Molecular BiologyHydrolase1312 Molecular BiologyAmino Acid SequencedetoxificationRhodococcus erythropolisBiologyMonoterpene degradationMolecular Biologyprotein data-bankenzyme substrate complexEnzyme substrate complexnonhumancatalysisSequence Homology Amino AcidGeneral Immunology and Microbiologybacterial enzymeActive sitecrystal-structureAFSG Staff Departments (WUATV)enzyme metabolismProtein SubunitsenzymeEpoxide HydrolasesGeneral Biochemistrybiology.proteinMutagenesis Site-Directed570 Life sciences; biologyselenomethioninenaphthalene 1Alpha helix
researchProduct

A novel structural unit in the N-terminal region of filamins.

2014

Immunoglobulin-like (Ig) domains are a widely expanded superfamily that act as interaction motifs or as structural spacers in multidomain proteins. Vertebrate filamins (FLNs), which are multifunctional actin-binding proteins, consist of 24 Ig domains. We have recently discovered that in the C-terminal rod 2 region of FLN, Ig domains interact with each other forming functional domain pairs, where the interaction with signaling and transmembrane proteins is mechanically regulated by weak actomyosin contraction forces. Here, we investigated if there are similar inter-domain interactions around domain 4 in the N-terminal rod 1 region of FLN. Protein crystal structures revealed a new type of dom…

Models MolecularEGF-like domainProtein ConformationFilaminsProtein domainMolecular Sequence DataBeta sheetmacromolecular substancesBiologyCrystallography X-RayBiochemistryProtein–protein interactionHAMP domainProtein structureHumansAmino Acid SequenceMolecular BiologyNuclear Magnetic Resonance Biomolecularta1182Cell BiologyProtein Structure TertiaryCrystallographyStructural biologyProtein Structure and FoldingBiophysicsBinding domainProtein BindingThe Journal of biological chemistry
researchProduct

ChemInform Abstract: Learning from Nature: β-Sheet-Mimicking Copolymers Get Organized

2008

Polymer scienceChemistryCopolymerBeta sheetGeneral MedicineChemInform
researchProduct

Racemic S ‐(ethylsulfonyl)‐ dl ‐cysteine N ‐Carboxyanhydrides Improve Chain Lengths and Monomer Conversion for β‐Sheet‐Controlled Ring‐Opening Polyme…

2020

The secondary structure formation of polypeptides not only governs folding and solution self-assembly but also affects the nucleophilic ring-opening polymerization of alpha-amino acid-N-carboxyanhydrides (NCAs). Whereby helical structures are known to enhance polymerization rates, beta-sheet-like assemblies reduce the propagation rate or may even terminate chain growth by precipitation or gelation. To overcome these unfavorable properties, racemic mixtures of NCAs can be applied. In this work, racemicS-(ethylsulfonyl)-dl-cysteine NCA is investigated for the synthesis of polypeptides, diblock and triblock copolypept(o)ides. In contrast to the polymerization of stereoregularS-(ethylsulfonyl)-…

Polymers and PlasticsChemistryOrganic ChemistryBeta sheet02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesRing-opening polymerizationPolymerization0104 chemical scienceschemistry.chemical_compoundMonomerReaction rate constantPolymerizationNucleophileYield (chemistry)Polymer chemistryMaterials ChemistryCopolymerProtein Conformation beta-StrandCysteineAmino AcidsPeptides0210 nano-technologyMacromolecular Rapid Communications
researchProduct

Evaluation of Charge‐Regulated Supramolecular Copolymerization to Tune the Time Scale for Oxidative Disassembly of β‐Sheet Comonomers

2019

A multistimuli-responsive supramolecular copolymerization is reported. The copolymerization is driven by hydrogen bond encoded β-sheet-based charge co-assembly into 1D nanorods in water, using glutamic acid or lysine residues in either of the peptide comonomers. The incorporation of methionine as hydrophobic amino acid supports β-sheet formation, but oxidation of the thioether side-chain to a sulfoxide functional group destabilizes the β-sheet ordered domains and induces disassembly of the supramolecular polymers. Using H2 O2 as reactive oxygen species, the time scale and kinetics of the oxidative disassembly are probed. Compared to the charge neutral homopolymers, it is found that the oxid…

Polymers and PlasticsMacromolecular SubstancesPolymersSupramolecular chemistryBeta sheet02 engineering and technology010402 general chemistry01 natural scienceschemistry.chemical_compoundThioetherAmphiphilePolymer chemistryMaterials ChemistryCopolymerAmino Acidschemistry.chemical_classificationNanotubesHydrogen bondOrganic ChemistryHydrogen BondingSulfoxideHydrogen-Ion Concentration021001 nanoscience & nanotechnology0104 chemical sciencesSupramolecular polymerschemistryProtein Conformation beta-StrandPeptidesReactive Oxygen Species0210 nano-technologyOxidation-ReductionMacromolecular Rapid Communications
researchProduct

Learning from nature: beta-sheet-mimicking copolymers get organized.

2007

The solution structures formed by coil-coil copolymers arise from the selective solvation of one of the two blocks and have been well described. In most cases in such relatively simple synthetic structures there are no specific attractive forces that can aid the aggregation process. Nature, however, provides plenty of inspiring polymeric architectures that are shaped and ordered hierarchically by noncovalent forces. The high level of structural definition displayed by proteins, for example, is unmatched by synthetic polymers. An emerging area of interest in polymer science tries to combine the best of both worlds, the natural and the synthetic, by conjugating synthetic polymers and beta-she…

PolymersSupramolecular chemistryBeta sheetNanotechnologyMicroscopy Atomic ForceProtein EngineeringCatalysisProtein Structure SecondaryPolyethylene GlycolsMicroscopy Electron TransmissionCopolymerchemistry.chemical_classificationIntermolecular forceSolvationProteinsGeneral ChemistryPolymerSolution structureProtein Structure TertiarySupramolecular polymersChemistrychemistryModels ChemicalNanoparticlesPeptidesOligopeptidesAngewandte Chemie (International ed. in English)
researchProduct

The crystal structure of bacteriophage Qβ at 3.5 å resolution

1996

Abstract Background: The capsid protein subunits of small RNA bacteriophages form a T=3 particle upon assembly and RNA encapsidation. Dimers of the capsid protein repress translation of the replicase gene product by binding to the ribosome binding site and this interaction is believed to initiate RNA encapsidation. We have determined the crystal structure of phage Qβ with the aim of clarifying which factors are the most important for particle assembly and RNA interaction in the small phages. Results The crystal structure of bacteriophage Qβ determined at 3.5 a resolution shows that the capsid is stabilized by disulfide bonds on each side of the flexible loops that are situated around the fi…

Small RNAcrystal structureProtein ConformationvirusesMolecular Sequence DataBeta sheetMS2RNA-dependent RNA polymeraseCapsidProtein structureStructural BiologyAmino Acid SequenceBinding siteMolecular BiologyAllolevivirusBinding SitesCrystallographySequence Homology Amino AcidbiologyRNA-Binding ProteinsRNAbiology.organism_classificationProtein Structure TertiaryCrystallographyCapsidBiophysicsSequence AlignmentBacteriophage QβStructure
researchProduct